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Wave Characteristic of Femtosecond Heat 
Conduction in Thin Films t 

J. M a r c i a k - K o z | o w s k a  2 

The hyperbolic heat conduction equation (HHC) is solved for submicrometer 
gold film irradiated with a short-pulse laser. The transient temperature profiles 
are calculated. It is shown that the solutions of HHC and standard heat 
diffusion equation are significantly different for submicrometer films. 
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1. INTRODUCTION 

New technologies based on fast laser heating are developing rapidly due to 
increasing availability of high-power, short-pulse lasers. The short-pulse 
energy deposition reduces heat-affected areas by minimizing heat diffusion 
and realizes ultrafast heating, melting and solidification. In addition, 
short-pulse laser heating is becoming an important tool in studying thermal 
properties of thin films. 

Conventional laser heating processes, which involve a relatively low 
energy flux and long laser pulse, have been successfully modeled in metal 
processing and in measuring thermal diffusivity of thin films. However, the 
appropriateness of applying these models to short-pulse laser heating is 
subject to question [1 ]. In the present paper, we applied the hyperbolic 
heat conduction equation (HHC) to the heat propagation in thin metal 
films. The concept of HHC in a single-phase material dates back to 
Maxwell [-2] and has since been derived by several approaches. In the 

~ Paper presented at the Third Workshop on Subsecond Thermophysics, September 17-18, 
1992, Graz, Austria. 

2 Institute of Electron Technology, AI. Lotnik6w 32/46, 02-668 Warsaw, Poland. 

593 

0195-928X/93/0500-0593507.00/0 �9 1993 Plenum Publishing Corporation 



594 Marciak-Kozlowska 

present paper, the solution of HHC is obtained for the one-dimensional 
problem. The calculated nonequilibrium temperature pulses propagate in 
the film as the thermal wave which is damped by collisions. 

The propagation speed Vs = x/~ VF of the thermal wave is finite and 
gives rise to finite delay time of temperature pulse. 

2. FORMULATION 

The merit of the wave model, in contrast to the classical heat diffusion 
theory, lies in its unique way of describing a thermal signal propagating in 
solids with a finite wave speed. The finite wave speed has intrinsic influen- 
ces on the mechanism of heat transfer. Mathematically, it renders an energy 
equation hyperbolic in nature. While the thermal wave speed resides in the 
wave term, the thermal diffusivity plays a role of damping in the thermal 
wave propagation. The weighted effect between the two is defined as the 
relaxation time [-3, 4] in the wave theory. Under this frame, the classical 
diffusion theory is a special case of immediate response and the relaxation 
time is zero. The so-called hyperbolic theory of heat conduction describes 
the relaxation behavior in the history of thermal wave propagation. For 
both temperature and flux waves, a general feature is that a sharp wave 
front exists when penetrating through a solid medium. The thermal shock 
formation is a physical phenomenon pertinent to the wave theory [5]. 

According to the constitutive relation in the thermal wave model, heat 
flux, ~] obeys the relation [5, 6-]: 

~(7, t + z ) =  - kVT(7 ,  t) (1) 

where z is the relaxation time (a phase lag) and k is the thermal conduc- 
tivity. The temperature gradient established in the material at time t results 
in a heat flux that occurred at a later time t + z due to the insufficient time 
of response. For combining with the energy equation, however, all the 
physical quantities involved must correspond to the same instant of time. 
The Taylor's series expansion is thus applied to the heat flux ~] in Eq. (1) 
to give 

(t(7, t) +- - - -~ -~z  + t~t-----T-----+ . . . . .  kVT(7, t) (2) 

In the linearized thermal wave theory, 
and the higher-order terms in Eq. (2) 
first-order term in v, Eq. (2) becomes 

q(7 ,  t )  + ~ - -  

2 

the phase lag is assumed to be small 
are neglected. By retaining only the 

= -kVT(F,  t) (3) 
c3t 
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After combining Eq. (3) with the energy equation, 

OT 
- V .  q +  S = pCp -~7 (4) 

where S is the heat source per unit volume, p is the mass density, and Cp 
is the heat capacity, the result may have either a temperature T or a heat 
flux (c]) representation. The T representation is obtained by eliminating 
from the two equations: 

( 1 \ [ -S  D r  c3S7 Dr c32T OT 

For the medium without sources, one obtains instead of Eq. (5), 

1 O2T 1 c~T 
2 c3t ~ + - V2T, D r  = zv 2 (6) 

vs D r  Ot 

with r being replaced by D r / v  2 [3], where Dr  is the thermal diffusivity and 
vs the thermal wave speed. Equation (6) is the hyperbolic heat conduction 
equation (HHC). 

3. NONEQUILIBRIUM HEAT T R A N S P O R T  I N  
SUBPICOSECOND LASER-HEATED GOLD FILMS 

The fact that the electronic heat capacity of metals is one to two 
orders of magnitude smaller than the lattice heat capacity has led to many 
investigations of nonequilibrium phenomena in metals with subpicosecond 
lasers. Model calculations suggest that it should be possible to heat the 
electron gas to temperature Te of up to several thousand degrees for a few 
picoseconds while keeping the lattice temperature T l relatively cold [7, 8]. 

Electromagnetic radiation with wavelength ranging from UV to near- 
IR interacts with metals through electron excitation and electron-phonon 
interactions. Photons excite electrons into higher energy levels and then the 
excited electrons thermalize rapidly, giving rise to a hot free electron gas. 
The high-temperature electron gas diffuses inside the metal and heats up 
the metal lattice through electron-photon collisions. This phenomenon 
has been observed experimentally by femtosecond photoemission E9]. 
Unresolved, however, is the role of heat transport in the dynamics of the 
hot electronqattice system. This is because most experiments performed 
cannot distinguish between relaxation due to heat flow out of the probed 
region and electronic relaxation via photon emission. Only recently, the 
ultrafast heat transport in thin gold films under femtosecond laser irradia- 
tion was observed [10]. Time of flight measurements indicate that the heat 
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transit time scales linearly with the sample thickness and that the heat 
transport is very rapid, occurring at a velocity close to the Fermi velocity 
of electrons in gold. The experiment described in Ref. 10 may be good for 
testing ideas about heat wave propagation in this metal films. At present, 
the theory is based on the two temperature diffusion model of Anisimov 
et al. [8], even thought the relaxation times involved are well within the 
range where wave propagation could be dominant. 

The objective of the subsequent investigation is to analyze the non- 
equilibrium heat transport in the Fermi gas of electrons in thin gold films. 
Guided by the results reported in the literature [10], we assume that in 
nonequilibrium electron gas heat is transferred as the thermal wave, i.e., the 
heat transport in thin films is described by HHC, Eq. (6). 

First, we realized that for the Fermi electron gas, the thermal wave 
speed is defined as [ 11 ] 

1/2 
( p2 (l+VSo) (7) 

Vs= \3ram, 

where m is the mass of free electron, m* is the efective mass of interacting 
Fermions, and F~ is a dimensionless measure of the interaction strength in 
Fermi system. In the limit of weak interaction, m*-+m, Fo ~ 0 ,  and 

Vs--+X/~gVF. Assuming for Fermi velocity v v = l . 4 x l 0 8 c m . s  -1, one 
obtains vs = 0.8 x 108 cm-s 1. The calculated thermal wave speed (second 
sound speed) is of the same order of magnitude as the heat transport speed 
extracted in the literature [10]. 

In this paper, the short-pulse laser heating of a metal film is analyzed 
on the basis of a one-dimensional model, since the beam diameter is 
typically much larger than the heat diffusion penetration depth in a very 
short time. The temporal shape of a laser pulse is assumed as follows: 

T(x,t)={gTo for O<x<vsAt 
for x>vsAt (8) 

With the temperature profile described by Eq. (8), the solution of Eq. (6) 
reads 

T(l,t)=~Aroexp - ~  O(t-to)O(to+At--t)  

1 t I t 1 + - ~ A t A T o e x p ( - - ~ ) {  o(Z)+-~zzll(Z)}O(t-to) (9) 

where z = (t 2 - t2o)1/2/2"c and to = x/vs. In Eq. (9) Io and 11 are the modified 
Bessel functions, and O denotes the Heaviside function. The first term in 



Femtosecond Heat Conduction in Films 597 

2' 

i ---  

Fig. 1. Temperature pulses for gold film. Initial 
temperature A To=800K. Length is measured in 
micrometers and time in pieoseconds. Heavy lines 
indicate the solution of the HHC equation; thin lines, 
the Fourier equation. 

this solution corresponds to ballistic propagation of the temperature pulse 
damped by exp( - t /2z ) .  The second term corresponds to the propagation 
of the energy scattered out of the ballistic pulse by diffusion. In the limit 

---, oe the ballistic pulse alone arrives at the detector. In the limit ~ ~ 0 the 
second term takes on asymptotic form which is solution to the conven- 
tional diffusion equation. 

In Fig. 1 the calculated temperature profiles are plotted for z = 0.6 ps 
and v~ = 108 cm. s 1. The input value of temperature, A To, is 800 K. The 
calculated curves represent the solution of the Fourier equation (parabolic 
heat diffusion equation; PHC)  and the non-Fourier equation (HHC), 
Eq. (6). As can be seen in the thin films irradiated by a laser pulse, for a 
short time ( t ~  z), the solutions of PHC and HHC are significantly dif- 
ferent. For  example, for a submicrometer ( l=  0.7/am) film, the temperature 
obtained from PHC is 440 K, while for the same film from HHC the 
temperature obtained is 655K. For  thick films, / > 2 # m ,  solutions of 
both equations, PHC and HHC, overlap. 

4. C ONC LUS I ONS 

In this paper, the solution of HHC for thin films is obtained. It is 
shown that for submicrometer films the solutions of standard heat diffusion 
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equa t ion  and  H H C  are  signif icantly different. Cons ider ing  that  P H C  is 
ob ta ined  when vs = oc is assumed and,  as shown in the paper ,  Vs is finite 
and  vs --~ 108 c m .  s 1, the appl icab i l i ty  of  P H C  to the descr ip t ion  of hea t  

t r a n s p o r t  in this films is no t  based  firmly. As discussed above,  the H H C  
offers a p laus ib le  descr ip t ion  of  the the rmal  processes in the submic rome te r  

films. 
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